Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.

نویسندگان

  • Adrian L R Thomas
  • Graham K Taylor
  • Robert B Srygley
  • Robert L Nudds
  • Richard J Bomphrey
چکیده

Here we show, by qualitative free- and tethered-flight flow visualization, that dragonflies fly by using unsteady aerodynamic mechanisms to generate high-lift, leading-edge vortices. In normal free flight, dragonflies use counterstroking kinematics, with a leading-edge vortex (LEV) on the forewing downstroke, attached flow on the forewing upstroke, and attached flow on the hindwing throughout. Accelerating dragonflies switch to in-phase wing-beats with highly separated downstroke flows, with a single LEV attached across both the fore- and hindwings. We use smoke visualizations to distinguish between the three simplest local analytical solutions of the Navier-Stokes equations yielding flow separation resulting in a LEV. The LEV is an open U-shaped separation, continuous across the thorax, running parallel to the wing leading edge and inflecting at the tips to form wingtip vortices. Air spirals in to a free-slip critical point over the centreline as the LEV grows. Spanwise flow is not a dominant feature of the flow field--spanwise flows sometimes run from wingtip to centreline, or vice versa--depending on the degree of sideslip. LEV formation always coincides with rapid increases in angle of attack, and the smoke visualizations clearly show the formation of LEVs whenever a rapid increase in angle of attack occurs. There is no discrete starting vortex. Instead, a shear layer forms behind the trailing edge whenever the wing is at a non-zero angle of attack, and rolls up, under Kelvin-Helmholtz instability, into a series of transverse vortices with circulation of opposite sign to the circulation around the wing and LEV. The flow fields produced by dragonflies differ qualitatively from those published for mechanical models of dragonflies, fruitflies and hawkmoths, which preclude natural wing interactions. However, controlled parametric experiments show that, provided the Strouhal number is appropriate and the natural interaction between left and right wings can occur, even a simple plunging plate can reproduce the detailed features of the flow seen in dragonflies. In our models, and in dragonflies, it appears that stability of the LEV is achieved by a general mechanism whereby flapping kinematics are configured so that a LEV would be expected to form naturally over the wing and remain attached for the duration of the stroke. However, the actual formation and shedding of the LEV is controlled by wing angle of attack, which dragonflies can vary through both extremes, from zero up to a range that leads to immediate flow separation at any time during a wing stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Amplitude and Mean Angle of Attack on the Unsteady Surface Pressure of a Pitching Airfoil

Details of pressure distributions, on a two dimensional airfoil oscillating in pitch through stall, in a 0.8 0.8 m low-speed wind tunnel are presented. Pitching occurred about the airfoils quarter-chord axis. Pitch rate, Reynolds number, and oscillation amplitudes were varied to determine the effects on pressure and lift distributions. It was found that mean angle of attack and pitching amplitu...

متن کامل

The role of drag in insect hovering.

Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and ups...

متن کامل

The Effects of Wing Rotation on Unsteady Aerodynamic Performance at Low Reynolds Numbers

The downstroke-to-upstroke transition of many insects is characterized by rapid wing rotation. The aerodynamic consequences of these rapid changes in angle of attack have been investigated using a mechanical model dynamically scaled to the Reynolds number appropriate for the flight of small insects such as Drosophila. Several kinematic parameters of the wing flip were examined, including the sp...

متن کامل

Aerodynamic Control Using Windward-Surface Plasma Actuators on a Separation Ramp

Wind-tunnel experimentswere conducted on a 47-deg sweep, scaled 1303unmanned air vehiclemodel to assess the performance of an innovative windward-surface plasma actuator design for flight control at low angles of attack. Control was implemented by altering the flow past an aft separation ramp on the windward side using a single dielectric barrier discharge plasma actuator. The influence of ramp...

متن کامل

Experimental and numerical investigation of unsteady flow around cylinder with four plates perpendicular to it with the rotational degree of freedom

In this study, the behavior of a subject consisting of a cylinder with 4 plates perpendicular to it with a rotational degree of freedom under airflow both through the numerical approach, known as improved discrete vortex and experimental approach were investigated. The experimental and numerical results have shown that oscillating regime occurs in low velocity and length. This movement is vibra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 207 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2004